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Two component hard sphere mixtures are studied by means of a modified hypernette(@iHAIG)
approach in which Percus-Yevi¢RY) bridge functions are employed. The thermodynamic self-consistency of
the theory is obtained by using as adjustable parameters the hard sphere diameters entering the expressions of
the bridge functions. Thermodynamically consistent calculations are also performed in the RogergRung
approximation in terms of two consistency parameters. A wide range of diameter ratios and of relative con-
centrations of the particle species is explored, with particular attention to strongly asymmetric mixtures in the
highly diluted regime of the bigger-sized component. Comparison with Monte Carlo results, and with well
known parametrizations of computer simulation data, shows that the MHNC predictions for thermodynamic
and structural quantities are generally very accurate and slightly superior to the RY ones. It also turns out that
the PY bridge functions, which yield the thermodynamic consistency, reproduce fairly well those of the actual
mixture as obtained from the parametrizations of simulation results. Such an agreement remains valid up to
diameter ratios as great as 3, and down to 2% concentration of the bigger-sized component.
[S1063-651%97)00212-2

PACS numbes): 64.70—p, 82.60.Lf, 64.75+g

[. INTRODUCTION by the knowledge of the hard sphere bridge function. In the
one component hard sphere fluid case the latter was deter-
Several author§l-6] have recently addressed the prob- mined[21] by making use of “zero separation theorems”
lem of determining both the bridge functions and other func-and of an accurate representation for the cavity distribution
tions relevant in the structural description of two-componenfunction y(r) [22], together with extensively tested param-
fluids. Hard sphere mixtures have been, in particular, theetrizations of computer simulation data for thermodynamic
object of an intense theoretical investigation and this hasind structural quantitig23—-26.
yielded a number of works based on liquid state integral
equation theorief7,8—13, the density functional formalism S S e I
[13-15, and other approach¢&6-18. r 1
Most of these studies do actually concern hard sphere
mixtures characterized by a strong size asymmetry of the two “
particle species, and by a high dilution of the bigger-sized L ﬂ
component. Such mixtures are in fact believed to model with - T
sufficient accuracy real systerfsuch as, e.g., certain colloi-
dal suspensionsfor which neither experiment§19] nor

computer simulationg20] have as yet clearly established w
whether(under appropriate temperature conditipadiquid- . 1 .
liquid or a liquid-solid phase separation takes place. On the
other hand, theoretical studies based on integral equation ap-
proaches predict that a phase segregation process does acti 10
ally occur[8], although the nature of the coexisting phases is
still a matter of debat€8,11,13.
Under such conditions it becomes particularly necessary 9¢ Le v L v 0 L0 L0 0 Lo
to perform extensive tests of the most accurate theories avail- 0 0.2 0.4 0.6 0.8 1
able, in view of further determinations of the phase behavior X2
of such fluids. To this aim, we consider here the modified
hypernetted chaifMHNC) approach of Rosenfeld and Ash-  F|G. 1. Pressure ikgT/o® units[ o= x,03+ (1—x,) 03] for a
croft [21], and devote this paper to an investigation of themixture with a=1.176, =0.4817. Crosses with error bars, and
performances of this theory in the description of hard spherull line: MD results and best fit, respectivelkranendonk and
mixtures. Frenkel[35]); long dashed-short dashed line with circles: MHNC;
As is well known, in the MHNC a crucial role is played short dashed line with circles: RY2.
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FIG. 2. Radial distribution functions for hard sphere mixtures with diameter ratio8.333 and concentratiox,= 0.0625, at different
packing fractions. Open circles: MC resuffsom Ref.[37]); full line: MHNC.

Zero separation theorems and approximate expressiomsetries of the components, and examine in detail the high
for y;;(r) [22,27] are also available for two component hard dilution regime of the bigger-sized spheres. We also perform
sphere mixtures, but empirical equations of st&i®3 [28—  similarly self-consistent calculations in the well known
30], such as the one due to Mansoori, Carnahan, StarlindRogers-Young(RY) [42,43,7 approximation in which the
and Leland[28] and Boublik [30] (henceforth termed consistency is imposed through the use of two adjustable
BMCSL), and well known parametrizations of structural dataparameters.
due to Lee and Levesquél) [24] and Verlet and Weis The theoretical predictions for thermodynamic and struc-
(VW) [23], have been obtained from simulations only for nottural properties are first compared with simulati¢88,35.
too large size asymmetries and dilutions of the bigger-sizedhe PY bridge functions that yield the thermodynamic con-
hard spheref30-38. sistency are then compared with those of the actual mixture

In order to apply the MHNC to multicomponent fluids we as estimated on the basis of parametrized simulation data.
need therefore to resort to some approximate expression for In Sec. Il we recall some basic relations of the MHNC
the bridge functions. We do this according to an approactand RY theories and describe the thermodynamic consis-
already adopted for one component fluj@d]; namely, we tency procedure. Results are reported in Sec. lll. Section IV
assume that the true bridge functions of the system can beontains the conclusions.
represented by their Percus-Yevi@kY) counterparts, easily
obtained from the analytic solution of this thedi39]; the Il. THEORETICAL APPROACH
hard sphere diameter entering the PY bridge functions are
then used as adjustable parameters in order to enforce the We briefly recall the basic equations of the MHNC theory
thermodynamic self-consistency of the the¢ad]. Such a  [21] for multicomponent fluids.
type of investigation has been considered feasible since the The exact relationship obtained through cluster expansion
MHNC has been devisef21,41]; we are not aware, how- techniques,
ever, of any published calculation for mixtures in which the
PY bridge functions have been adopted within a thermody- gij(r)=exd — BV;;(r)+h;(r)—c;(r)+B;(r)] (1)
namically self-consistent approach.

We consider hard sphere mixtures with various size asymfwhere h;;(r)=g;;(r)—1 is the pair correlation function,
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cij(r) is the direct correlation functiorB;;(r) is the bridge
function, andV;;(r) is the interparticle potentigland the
Ornstein-Zernike equation

hij(f):Cij(f)+k21Pkfhik(r’)ij(|f_f'|)df' (2 g, 3

with p, the number density of particles in theh compo-

nent, form a closed set of equations in the unkndwir)

andc;;(r) provided some prescription is available #®j(r)

(only formally known in terms of the infinite series of

“bridge” diagrams. 1 11 12 13
Now for hard sphere mixtures we have

o, r<0'ij

()= 10
Vlj(r) 0’ r>(f|] , (3) ]
with .
oit o €n 7
o= (4) N
and o; the hard sphere diameter in thth component. g
As anticipated in the Introduction, our MHNC approach 4

for particles interacting through potentied) will consist in
assuming that the true bridge function of the system can be 334 3.38 3.42 3.46 3.5
represented in terms of PY bridge functidi2q]

BY(r;0f) =Iny;; (1) —yy (N +1, (5) -

where y;;(r)=g;;(r)exd 8V;(r)] is the cavity distribution
function andaﬁ are the adjustable diameters. gn

Thermodynamic consistency can then be imposed in two
different manners:

(a) We can require that the virial and the compressibility
equation of statdEOS be equal. This can be obtained by
taking the isothermal derivative of the virial pressure with 3
respect to the density and equating it to the isothermal com- 218 224 23
pressibility k1 [44], namely, by setting /G,

3.6

(BaP)V" 22: 22: 0); FIG. 3. Same as Fig. 2 near the hard sphere contact poiots
— L L Xi ]pCI] a=

_ 1_
o =(pkgTky) "=1- the expanded distance scale
.

(®) | ,

B&P viIr _
herep is the total number density of particles= p, /p is the (Tpl) =1- .21 piCij(a=0). ®)
concentration of theth species, and;;(q) is the Fourier T
transform ofc;;(r).
The left-hand sidélhs) of Eq. (6) is estimated from the Obviously, the sum of conditioné8) yields Eq.(6), as is
virial EOS, which for hard sphere mixtures reads easy to verify.
Whether we adopt the single equatio®), or the two
BP\VIr 277,) equations(8), we do not have yet enough conditions to fix
( p ) E 2 XiX; o, 0ij (7)) (M the threes?; . We then assume that the additivity condition
(4) for the cross diameter of the hard sphere mixture also

holds foro7},, namely, that

with gjj(oy;) the contact values of the radial distribution
functions(RDF’s).

(b) As discussed in previous work8,43], we can also o= 3(07 +03%). 9
require consistency between the derivatives of the virial pres-
sure and the osmotic compressibilities as estimated from At this stage, if consistency is to be imposed through the
fluctuation theory, that is, unique condition6), we further set
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s oy TABLE |. Values of BP/p for various hard sphere mixtures as
—=—, (10 obtained from simulation, parametrizations of computer simulation
g 01 data, and different theories.

so that we are left with only one free parameter to fit, say,

o7 . (L) 7 X, MC LL-VW MHNC RY2 PY
If conditions are adopted instead, we can work with two
adjustable parameters} ando% , and fixo?, according to ~ 1.666° 03~ 0.125  3.73 3.688
A consistency scheme similar to the one just described is 049 0125 11.102 10.723
also adopted for the other closure of the Ornstein-Zernike 03 0.25 3.648 3.617
(0Z) equation that we have considered, namely, the Rogers- 0.4 0.25 6.241 6.119
Young [42] approximation; this is written as 049 025 10.767 10.423
2 05 005 115 115 112 11.09 9.86
gij(r)=exd — BV;;(r)]
[0.5] 0.5 0.101 10.7 10.8 10.54 10.44 9.32
exp(fi; (N[h;i(r)—c;i(r)])—1 0.5 0.199 10.1 10.4 10.09 9.99 8.93
|1+ ['f‘ ("] , (11
ij (1) 3 045 00198 842 750 735 7.31 6.75

[0.333 0.45 0.0625 6.27 6.22 6.14 6.11 5.68

wheref;;(r)=1—exd —§;r] and the¢;; are parameters that 05 0.0625 8.47 8.32 815 808 7.34

serve to enforce the thermodynamic consistency. Note that

by means of Eqs(1) and(11) one can determine thig;;(r) 3.333 03 0.0625 2.79 2.749
that correspond to any RY calculation. [0.3] 04 0.0625 4.410 4.306
The RY for hard sphere mixtures has been previously 0.49 00625 7.158 7.7 6.862
investigated by Biben and Hansg8]. In the simplest ver- 0.3 0.125 2.687 2.650
sion of this theory one can use a single consistency param- 0.4 0.125  4.204 4.101
eter either by setting;;=¢ or by imposing relationships 049 0125 6.77 6.49
similar to Egs.(9) and (10) for the &; . In the more sophis- 049 05 881 865 837 834 818

ticated version twd parameters are used with different pre-

Scriptions foré-‘lz(RYZ) [8,43] 5.0 0.1729 0.064 1.516 1.502
As already experienced by Biben and Hang&hthe re- [0.2]  0.1891 0.064  1.583 1.570

sults obtained in the two cases do not differ significantly 0.2039 0.064  1.652 1.637

from each other. In what follows we shall report only the 0.2425 0.064  1.852 1.832

results we obtained with two consistency parameters, which 0.3006 0.064 2.241 2.202

are slightly more accurate.
ghty 3MC data from Ref[36].

bMC, LL, and PY data from Ref(33].
‘MC data atx,=0.0625 and 0.125 from Reff36].
We first report MHNC and RY2 selfconsistent calcula- “Estimated from the BMCSL equation of state.
tions of the EOS for a slightly asymmetric mixture with ‘Data from Ref[1].
a=0,l0,=1.176 (r,/0,=0.85) at packing 7=(m/6) MC data from Ref[38].
(p103+ pp03)=0.4817. Results are reported in Fig. 1 and
compared with computer simulation d48b]. It can be seen might be significantly affected by statistical problems for
that the MHNC systematically improves over RY2; both very low concentrations as, for instance, in #3e=0.02 case
theories, however, underestimate the pressure by 3—4% ovg33].
the entire concentration range. We now show in Figs. 2 ah3 a detailed comparison
Results for the EOS and;;(oj;) of more asymmetric between radial distribution functions obtained in the MHNC
mixtures and in different concentration regimes are shown irfor a=3.333 andx,=0.0625, with MC results.
Tables | and II. The agreement between theory and simulation is gener-
It appears that the MHNC and RY2 provide very similar ally very satisfactory except at very small distances; the fail-
estimates of boti8P/p andg;;(oj;), but the MHNC is sys- ure of the MHNC to reproduce the M@,(a,) in this case,
tematically, albeit slightly, better than the RY2. The order ofalready quantified in Table Il is visible in Fig. 3. The theory
the discrepancy between the theoretical results and LL-VWonfirms the existence in the rdfs of two extreif@amini-
parametrizations does not seem to depend significantly, on mum and a maximujnabove 1 atr/o,=2, first noticed in
X, Or 7, and is at most 4%. The agreement between theoriC calculations by Malijevsket al.[37]; the evolution with
and Monte CarldMC) data is also generally good with the the packing fractions of such features, from the shoulder vis-
exception ofg,,(o4,), Which seems poorly estimated in the ible at »=0.3 to the well defined minimum and peak, respec-
more asymmetric case= 3.333, at the lowest concentration. tively, at =0.49, are also quite well reproduced.
It is worth observing that in such extreme regimes neither the We finally show the comparison of the PY bridge func-
BMCSL equation of state nor the LL-VW parametrizations tions, which yield the thermodynamic self-consistency of the
are particularly accurate in comparison to simulatisee = MHNC, with those obtained from parametrizations of com-
Tables | and II; note, however, that the simulation data puter simulation results.

lll. RESULTS
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TABLE Il. Contact values or radial distribution functions. Same legend as Table I.

(1/a) » X, MC LL-VW MHNC RY2 PY
911(01)
0.5 0.05 5.40 5.28 5.11 5.05 455
22 0.5 0.101 4.80 4.87 4.74 467 4.29
[0.5] 0.5 0.199 4.20 4.45 4.34 4.27 4.00
i 0.45 0.0198 4.70 3.89 3.81 3.78 3.53
[0.333 0.45 0.0625 3.30 3.30 3.25 3.18 3.10
0.5 0.0625 4.20 4.05 3.97 3.91 3.72
3.33% 0.3 0.0625 1.92 1.93
[0.3] 0.4 0.0625 2.59 2.63
0.49 0.0625 3.57 3.60 3.68
0.3 0.125 1.83 1.84
0.4 0.125 2.40 2.44
0.49 0.125 3.26 3.34
0.49 0.5 3.08 2.9¢" 2.9 2.8 2.88
912012
0.5 0.05 6.10 6.70 6.47 6.41 5.41
22 0.5 0.101 5.70 6.08 5.89 5.82 5.05
[0.5] 0.5 0.199 5.10 5.46 5.31 5.24 4.67
0.45 0.0198 5.60 5.20 5.07 5.04 4.39
3 0.45 0.062 4.20 4.19 4.11 4.10 3.74
[0.333 0.5 0.062 5.40 5.32 5.18 5.11 458
3.33% 0.3 0.0625 2.22 2.19
[0.3] 0.4 0.0625 3.19 3.12
0.49 0.0625 4.70 4.68 4,54
0.3 0.125 2.06 2.05
0.4 0.125 2.85 2.85
0.49 0.125 4.05 4.04
0.49 0.5 3.50 3.56' 3.48 3.47 3.34
924022
0.5 0.05 12.4 10.0 9.84 9.89 7.11
22 0.5 0.101 11.1 8.90 8.64 8.66 6.58
[0.5] 0.5 0.199 8.6 7.78 7.52 7.52 6.00
0.45 0.0198 6.70 10.2 10.4 10.5 6.96
R 0.45 0.0625 8.00 7.47 7.45 7.73 5.66
[0.333 0.5 0.0625 10.0 10.1 9.98 10.1 7.16
3.33% 0.3 0.0625 3.55 3.02
[0.3] 0.4 0.0625 5.93 4.85
0.49 0.0625 10.18 9.51 7.64
0.3 0.125 3.03 2.78
0.4 0.125 4.89 431
0.49 0.125 8.14 6.74
0.49 0.5 6.18 5.9¢" 5.74 5.74 4.96

3MC, LL, and PY data from Ref33].

PMC data atx,=0.0625 and 0.125 from Ref37].
‘Estimated from the BMCSI equation of state.
dData from Ref[1].

In Fig. 4 we report the case of a hard sphere mixture withrdiameters of the mixture, become much more accurate when
a=3.333 andx,=0.5 investigated by Enciset al. [1]. considered at the rescaledj yielding the thermodynamic

It can be seen that thBiFj’Y(r), considerably discrepant consistency. It also appears that the RY2 bridge functions,
from the parametrized results when estimated at the propdéhough obtained through a similarly consistent calculation,
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FIG. 4. Bridge functions for a hard sphere mixture with
=3.333,7=0.49, and equimolar concentratiox,& 0.5). Full line:
parametrized simulation results]; dashed line: PY estimated with 16
hard sphere mixture diametets;; black dots: PY, estimated at
consistency diametelzsﬁ ; open circles: RY2 resultsee Sec. )l

12

are much less accurate than the PY ones. B
The ability of the PY bridge function to faithfully map 22
onto the parametrized ones is further documented in Fig. 5,
where a much more diluted mixture havirg=0.0198 and
the samex as in Fig. 4 is considered.
We finally note that the flat behavior &%)(r) in the 0
region

1
Osr=sA=—
2

2

o201\ a—1 1/0,
2

FIG. 5. Bridge functions for a mixture withe=3.333, X,

. f the f hat in the PY for hard sph =0.01978, »=0.45. Dashed line: parametrized bridge functions;
|s_a consequence of the lact that in the or hard Spnergy jine: py bridge functions at thermodynamic consistency.
mixtures one haf39]

ex
—Cyr)=yr)=const, r<Ag, ylz(r<A12):§l—ﬁl;l)=const
1
so that, because of E@5), also B,(r) must be constant (with & and\, the chemical potential and the thermal wave-
over the same range of distances. We note that this speciflength, respectivelyimplies zero slope for the true cross
prediction of the PY turns out to be more than qualitativelybridge function atr =0, and this limiting behavior is also
accurate in comparison to the parametrized bridge functionsatisfied byB,(r).
as visible in Figs. 4 and 5. Also note that the second zero We have verified, however, that for more extreme asym-
separation theorem of Zhou and Steg9] for hard sphere metries, dilutions, and packing fractions, the PY representa-

mixture bridge function$Egs.(2.129 of Ref.[29]]. tion of the bridge functions becomes poor, and unable to
reproduce the marked oscillations that appear in the param-
, y;,(0) etrized bridge functions.
BlZ(o): ’
y12(0)

IV. CONCLUSIONS

combined with the first separation theorem for the cavity We have reported the results of MHNC calculations for
distribution function[22] hard sphere mixtures, performed on the basis of PY bridge
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functions in which the hard sphere diameters are chosen in In conclusion, the present work allows one to get a quan-
such a way as to impose the thermodynamic consistency ditative estimate of the wide range of physical parameters
the theory. Parallel calculations in the RY approximationover which the easily amenable PY information for hard
have been also performed, with the adoption of two freesphere mixtures can be fruitfully employed, within the
parameters. present MHNC approach, in order to predict thermodynamic
For not too high asymmetries, the MHNC predictions turnand structural properties of hard sphere mixtures. In the ab-
out to be in general accurate, even for a concentration of theence of direct simulation information for mixtures more
bigger-sized component as low as 2%, and up to packingsymmetric than those here envisaged, and with the aim of
fraction »=0.49. For higher asymmetries the theory seemdurther assessing the performances of liquid state theories in
unable to reproduce the simulation results, especially as faxtreme regimes of the physical parameters, we think it
as the contact value of the radial distribution function of thewould be also interesting to compare the present results with
bigger-sized hard spheres is concerned. The accuracy of tilkeose obtainable through other closures of the OZ equation,
RY theory turns out to be slightly inferior to that of the as, for instance, the Verl¢t#i4] approximation, recently re-
MHNC for all the cases investigated. considered by Henderscet al. [5], or through the use of
We also find that the PY bridge functions map fairly ac- other bridge functions as, for instance, those obtained in the
curately onto those obtained from parametrized computefundamental-measure free energy approach of Rosenfeld
simulation results, once thermodynamic self-consistency i§15].
imposed. Such an accuracy holds over the same wide range
of diameter ratios, densities, and concentrations over which
thermodynamic and structural properties are successfully re-
produced by the MHNC. The authors are grateful to Professor Anatol Malijevsky
We observe that our test of the PY bridge functions mightfor having made available to them the file data of MC radial
deserve a further assessment since the parametrizations dibtribution functions. C.C. wishes to acknowledge useful
computer simulation results used for the comparison areliscussions with Professor Jean-Pierre Hansen and Professor
based on an approximate form for the cavity distributionGeorge Stell. E.E. wishes to acknowledge a stimulating dis-
functiony(r) [22,45. It is also worth mentioning that recent cussion with Dr. N. G. Almarza and the financial support of
studies[3] have documented the usually poor performancessrant No. PB95-0072-C03-02 of DG1CYT/Spain. Both C.C.
of various integral equation theoriéBY included for highly ~ and E.E. wish to thank Professor Fred Lado for helping them
asymmetric hard sphere mixtures. to get in contact.
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