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Percus-Yevick bridge functions in a thermodynamic self-consistent theory
of hard sphere mixtures
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Two component hard sphere mixtures are studied by means of a modified hypernetted-chain~MHNC!
approach in which Percus-Yevick~PY! bridge functions are employed. The thermodynamic self-consistency of
the theory is obtained by using as adjustable parameters the hard sphere diameters entering the expressions of
the bridge functions. Thermodynamically consistent calculations are also performed in the Rogers-Young~RY!
approximation in terms of two consistency parameters. A wide range of diameter ratios and of relative con-
centrations of the particle species is explored, with particular attention to strongly asymmetric mixtures in the
highly diluted regime of the bigger-sized component. Comparison with Monte Carlo results, and with well
known parametrizations of computer simulation data, shows that the MHNC predictions for thermodynamic
and structural quantities are generally very accurate and slightly superior to the RY ones. It also turns out that
the PY bridge functions, which yield the thermodynamic consistency, reproduce fairly well those of the actual
mixture as obtained from the parametrizations of simulation results. Such an agreement remains valid up to
diameter ratios as great as 3, and down to 2% concentration of the bigger-sized component.
@S1063-651X~97!00212-2#

PACS number~s!: 64.70.2p, 82.60.Lf, 64.75.1g
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I. INTRODUCTION

Several authors@1–6# have recently addressed the pro
lem of determining both the bridge functions and other fu
tions relevant in the structural description of two-compon
fluids. Hard sphere mixtures have been, in particular,
object of an intense theoretical investigation and this
yielded a number of works based on liquid state integ
equation theories@7,8–12#, the density functional formalism
@13–15#, and other approaches@16–18#.

Most of these studies do actually concern hard sph
mixtures characterized by a strong size asymmetry of the
particle species, and by a high dilution of the bigger-siz
component. Such mixtures are in fact believed to model w
sufficient accuracy real systems~such as, e.g., certain collo
dal suspensions! for which neither experiments@19# nor
computer simulations@20# have as yet clearly establishe
whether~under appropriate temperature conditions! a liquid-
liquid or a liquid-solid phase separation takes place. On
other hand, theoretical studies based on integral equation
proaches predict that a phase segregation process does
ally occur@8#, although the nature of the coexisting phases
still a matter of debate@8,11,12#.

Under such conditions it becomes particularly necess
to perform extensive tests of the most accurate theories a
able, in view of further determinations of the phase behav
of such fluids. To this aim, we consider here the modifi
hypernetted chain~MHNC! approach of Rosenfeld and Ash
croft @21#, and devote this paper to an investigation of t
performances of this theory in the description of hard sph
mixtures.

As is well known, in the MHNC a crucial role is playe
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by the knowledge of the hard sphere bridge function. In
one component hard sphere fluid case the latter was d
mined @21# by making use of ‘‘zero separation theorems
and of an accurate representation for the cavity distribut
function y(r ) @22#, together with extensively tested param
etrizations of computer simulation data for thermodynam
and structural quantities@23–26#.

FIG. 1. Pressure inkBT/s3 units @s35x2s2
31(12x2)s1

3# for a
mixture with a51.176, h50.4817. Crosses with error bars, an
full line: MD results and best fit, respectively~Kranendonk and
Frenkel@35#!; long dashed–short dashed line with circles: MHN
short dashed line with circles: RY2.
6954 © 1997 The American Physical Society
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FIG. 2. Radial distribution functions for hard sphere mixtures with diameter rationa53.333 and concentrationx250.0625, at different
packing fractions. Open circles: MC results~from Ref. @37#!; full line: MHNC.
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Zero separation theorems and approximate express
for yi j (r ) @22,27# are also available for two component ha
sphere mixtures, but empirical equations of state~EOS! @28–
30#, such as the one due to Mansoori, Carnahan, Star
and Leland @28# and Boublik @30# ~henceforth termed
BMCSL!, and well known parametrizations of structural da
due to Lee and Levesque~LL ! @24# and Verlet and Weis
~VW! @23#, have been obtained from simulations only for n
too large size asymmetries and dilutions of the bigger-si
hard spheres@30–38#.

In order to apply the MHNC to multicomponent fluids w
need therefore to resort to some approximate expression
the bridge functions. We do this according to an appro
already adopted for one component fluids@21#; namely, we
assume that the true bridge functions of the system can
represented by their Percus-Yevick~PY! counterparts, easily
obtained from the analytic solution of this theory@39#; the
hard sphere diameter entering the PY bridge functions
then used as adjustable parameters in order to enforce
thermodynamic self-consistency of the theory@40#. Such a
type of investigation has been considered feasible since
MHNC has been devised@21,41#; we are not aware, how
ever, of any published calculation for mixtures in which t
PY bridge functions have been adopted within a thermo
namically self-consistent approach.

We consider hard sphere mixtures with various size as
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metries of the components, and examine in detail the h
dilution regime of the bigger-sized spheres. We also perfo
similarly self-consistent calculations in the well know
Rogers-Young~RY! @42,43,7# approximation in which the
consistency is imposed through the use of two adjusta
parameters.

The theoretical predictions for thermodynamic and str
tural properties are first compared with simulations@33,35#.
The PY bridge functions that yield the thermodynamic co
sistency are then compared with those of the actual mix
as estimated on the basis of parametrized simulation da

In Sec. II we recall some basic relations of the MHN
and RY theories and describe the thermodynamic con
tency procedure. Results are reported in Sec. III. Section
contains the conclusions.

II. THEORETICAL APPROACH

We briefly recall the basic equations of the MHNC theo
@21# for multicomponent fluids.

The exact relationship obtained through cluster expans
techniques,

gi j ~r !5exp@2bVi j ~r !1hi j ~r !2ci j ~r !1Bi j ~r !# ~1!

@where hi j (r )5gi j (r )21 is the pair correlation function
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ci j (r ) is the direct correlation function,Bi j (r ) is the bridge
function, andVi j (r ) is the interparticle potential#, and the
Ornstein-Zernike equation

hi j ~r !5ci j ~r !1 (
k51

n

rkE hik~r 8!ck j~ ur2r 8u!dr 8 ~2!

with rk the number density of particles in thekth compo-
nent, form a closed set of equations in the unknownhi j (r )
andci j (r ) provided some prescription is available forBi j (r )
~only formally known in terms of the infinite series o
‘‘bridge’’ diagrams!.

Now for hard sphere mixtures we have

Vi j ~r !5 H`,
0,

r ,s i j

r .s i j , ~3!

with

s i j [
s i1s j

2
~4!

ands i the hard sphere diameter in thei th component.
As anticipated in the Introduction, our MHNC approa

for particles interacting through potential~3! will consist in
assuming that the true bridge function of the system can
represented in terms of PY bridge functions@21#

Bi j
PY~r ;s i j* !5 lnyi j ~r !2yi j ~r !11, ~5!

where yi j (r )5gi j (r )exp@bVij(r)# is the cavity distribution
function ands i j* are the adjustable diameters.

Thermodynamic consistency can then be imposed in
different manners:

~a! We can require that the virial and the compressibil
equation of state~EOS! be equal. This can be obtained b
taking the isothermal derivative of the virial pressure w
respect to the density and equating it to the isothermal c
pressibilitykT @44#, namely, by setting

S b]P

]r D
T

vir

5~rkBTkT!21512(
i 51

2

(
j 51

2

xixjr c̃i j ~q50!;

~6!

herer is the total number density of particles,xi5r i /r is the
concentration of thei th species, andc̃i j (q) is the Fourier
transform ofci j (r ).

The left-hand side~lhs! of Eq. ~6! is estimated from the
virial EOS, which for hard sphere mixtures reads

S bP

r D vir

511
2pr

3 (
i

(
j

xixjs i j
3 gi j ~s i j ! ~7!

with gi j (s i j ) the contact values of the radial distributio
functions~RDF’s!.

~b! As discussed in previous works@8,43#, we can also
require consistency between the derivatives of the virial p
sure and the osmotic compressibilities as estimated f
fluctuation theory, that is,
e

o

-

s-
m

S b]P

]r i
D

T,r
i
2

vir

512(
j 51

2

r j c̃i j ~q50!. ~8!

Obviously, the sum of conditions~8! yields Eq. ~6!, as is
easy to verify.

Whether we adopt the single equation~6!, or the two
equations~8!, we do not have yet enough conditions to fi
the threes i j* . We then assume that the additivity conditio
~4! for the cross diameter of the hard sphere mixture a
holds fors12* , namely, that

s12* 5 1
2 ~s1* 1s2* !. ~9!

At this stage, if consistency is to be imposed through
unique condition~6!, we further set

FIG. 3. Same as Fig. 2 near the hard sphere contact points~note
the expanded distance scale!.
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s2*

s1*
5

s2

s1
, ~10!

so that we are left with only one free parameter to fit, s
s1* .

If conditions are adopted instead, we can work with tw
adjustable parameters,s1* ands2* , and fixs12* according to
prescription~9!.

A consistency scheme similar to the one just describe
also adopted for the other closure of the Ornstein-Zern
~OZ! equation that we have considered, namely, the Rog
Young @42# approximation; this is written as

gi j ~r !5exp@2bVi j ~r !#

3S 11
exp~ f i j ~r !@hi j ~r !2ci j ~r !# !21

f i j ~r ! D , ~11!

where f i j (r )512exp@2jij r# and thej i j are parameters tha
serve to enforce the thermodynamic consistency. Note
by means of Eqs.~1! and ~11! one can determine theBi j (r )
that correspond to any RY calculation.

The RY for hard sphere mixtures has been previou
investigated by Biben and Hansen@8#. In the simplest ver-
sion of this theory one can use a single consistency par
eter either by settingj i j 5j or by imposing relationships
similar to Eqs.~9! and ~10! for the j i j . In the more sophis-
ticated version twoj parameters are used with different pr
scriptions forj12(RY2) @8,43#.

As already experienced by Biben and Hansen,@8# the re-
sults obtained in the two cases do not differ significan
from each other. In what follows we shall report only th
results we obtained with two consistency parameters, wh
are slightly more accurate.

III. RESULTS

We first report MHNC and RY2 selfconsistent calcul
tions of the EOS for a slightly asymmetric mixture wi
a[s2 /s151.176 (s1 /s250.85) at packing h5(p/6)
(r1s1

31r2s2
3)50.4817. Results are reported in Fig. 1 a

compared with computer simulation data@35#. It can be seen
that the MHNC systematically improves over RY2; bo
theories, however, underestimate the pressure by 3–4%
the entire concentration range.

Results for the EOS andgi j (s i j ) of more asymmetric
mixtures and in different concentration regimes are show
Tables I and II.

It appears that the MHNC and RY2 provide very simil
estimates of bothbP/r andgi j (s i j ), but the MHNC is sys-
tematically, albeit slightly, better than the RY2. The order
the discrepancy between the theoretical results and LL-
parametrizations does not seem to depend significantly oa,
x2 , or h, and is at most 4%. The agreement between the
and Monte Carlo~MC! data is also generally good with th
exception ofg22(s22), which seems poorly estimated in th
more asymmetric casea53.333, at the lowest concentratio
It is worth observing that in such extreme regimes neither
BMCSL equation of state nor the LL-VW parametrizatio
are particularly accurate in comparison to simulation~see
Tables I and II!; note, however, that the simulation da
y
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might be significantly affected by statistical problems f
very low concentrations as, for instance, in thex250.02 case
@33#.

We now show in Figs. 2 and 3 a detailed comparison
between radial distribution functions obtained in the MHN
for a53.333 andx250.0625, with MC results.

The agreement between theory and simulation is ge
ally very satisfactory except at very small distances; the f
ure of the MHNC to reproduce the MCg22(s22) in this case,
already quantified in Table II, is visible in Fig. 3. The theo
confirms the existence in the rdfs of two extrema~a mini-
mum and a maximum! above 1 atr /s1.2, first noticed in
MC calculations by Malijevskyet al. @37#; the evolution with
the packing fractions of such features, from the shoulder
ible ath50.3 to the well defined minimum and peak, respe
tively, at h50.49, are also quite well reproduced.

We finally show the comparison of the PY bridge fun
tions, which yield the thermodynamic self-consistency of t
MHNC, with those obtained from parametrizations of com
puter simulation results.

TABLE I. Values ofbP/r for various hard sphere mixtures a
obtained from simulation, parametrizations of computer simulat
data, and different theories.

a
(1/a) h x2 MC LL-VW MHNC RY2 PY

1.666a 0.3 0.125 3.73 3.688
@0.6# 0.4 0.125 6.396 6.277

0.49 0.125 11.102 10.723
0.3 0.25 3.648 3.617
0.4 0.25 6.241 6.119
0.49 0.25 10.767 10.423

2b 0.5 0.05 11.5 11.5 11.2 11.09 9.86
@0.5# 0.5 0.101 10.7 10.8 10.54 10.44 9.32

0.5 0.199 10.1 10.4 10.09 9.99 8.93

3b 0.45 0.0198 8.42 7.50 7.35 7.31 6.75
@0.333# 0.45 0.0625 6.27 6.22 6.14 6.11 5.68

0.5 0.0625 8.47 8.32 8.15 8.08 7.34

3.333c 0.3 0.0625 2.79 2.749
@0.3# 0.4 0.0625 4.410 4.306

0.49 0.0625 7.158 7.07d 6.862
0.3 0.125 2.687 2.650
0.4 0.125 4.204 4.101
0.49 0.125 6.77 6.49
0.49 0.5 8.81e 8.65e 8.37 8.34 8.18e

5.0f 0.1729 0.064 1.516 1.502
@0.2# 0.1891 0.064 1.583 1.570

0.2039 0.064 1.652 1.637
0.2425 0.064 1.852 1.832
0.3006 0.064 2.241 2.202

aMC data from Ref.@36#.
bMC, LL, and PY data from Ref.@33#.
cMC data atx250.0625 and 0.125 from Ref.@36#.
dEstimated from the BMCSL equation of state.
eData from Ref.@1#.
fMC data from Ref.@38#.
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TABLE II. Contact values or radial distribution functions. Same legend as Table I.

a
(1/a) h x2 MC LL-VW MHNC RY2 PY

g11(s11)
0.5 0.05 5.40 5.28 5.11 5.05 4.55

2a 0.5 0.101 4.80 4.87 4.74 4.67 4.29
@0.5# 0.5 0.199 4.20 4.45 4.34 4.27 4.00

3a 0.45 0.0198 4.70 3.89 3.81 3.78 3.53
@0.333# 0.45 0.0625 3.30 3.30 3.25 3.18 3.10

0.5 0.0625 4.20 4.05 3.97 3.91 3.72

3.333b 0.3 0.0625 1.92 1.93
@0.3# 0.4 0.0625 2.59 2.63

0.49 0.0625 3.57 3.60c 3.68
0.3 0.125 1.83 1.84
0.4 0.125 2.40 2.44
0.49 0.125 3.26 3.34
0.49 0.5 3.06d 2.96d 2.9 2.8 2.86d

g12(s12)
0.5 0.05 6.10 6.70 6.47 6.41 5.41

2a 0.5 0.101 5.70 6.08 5.89 5.82 5.05
@0.5# 0.5 0.199 5.10 5.46 5.31 5.24 4.67

0.45 0.0198 5.60 5.20 5.07 5.04 4.39
3a 0.45 0.062 4.20 4.19 4.11 4.10 3.74
@0.333# 0.5 0.062 5.40 5.32 5.18 5.11 4.58

3.333b 0.3 0.0625 2.22 2.19
@0.3# 0.4 0.0625 3.19 3.12

0.49 0.0625 4.70 4.68c 4.54
0.3 0.125 2.06 2.05
0.4 0.125 2.85 2.85
0.49 0.125 4.05 4.04
0.49 0.5 3.50d 3.56d 3.48 3.47 3.34d

g22(s22)
0.5 0.05 12.4 10.0 9.84 9.89 7.11

2a 0.5 0.101 11.1 8.90 8.64 8.66 6.58
@0.5# 0.5 0.199 8.6 7.78 7.52 7.52 6.00

0.45 0.0198 6.70 10.2 10.4 10.5 6.96
3a 0.45 0.0625 8.00 7.47 7.45 7.73 5.66
@0.333# 0.5 0.0625 10.0 10.1 9.98 10.1 7.16

3.333b 0.3 0.0625 3.55 3.02
@0.3# 0.4 0.0625 5.93 4.85

0.49 0.0625 10.18 9.21c 7.64
0.3 0.125 3.03 2.78
0.4 0.125 4.89 4.31
0.49 0.125 8.14 6.74
0.49 0.5 6.18d 5.98d 5.74 5.74 4.96d

aMC, LL, and PY data from Ref.@33#.
bMC data atx250.0625 and 0.125 from Ref.@37#.
cEstimated from the BMCSI equation of state.
dData from Ref.@1#.
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In Fig. 4 we report the case of a hard sphere mixture w
a53.333 andx250.5 investigated by Encisoet al. @1#.

It can be seen that theBi j
PY(r ), considerably discrepan

from the parametrized results when estimated at the pro
h

er

diameters of the mixture, become much more accurate w
considered at the rescaleds i j* yielding the thermodynamic
consistency. It also appears that the RY2 bridge functio
though obtained through a similarly consistent calculati
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are much less accurate than the PY ones.
The ability of the PY bridge function to faithfully map

onto the parametrized ones is further documented in Fig
where a much more diluted mixture havingx250.0198 and
the samea as in Fig. 4 is considered.

We finally note that the flat behavior ofB12
PY(r ) in the

region

0<r<L125
1

s1
S s22s1

2 D5
a21

2

is a consequence of the fact that in the PY for hard sph
mixtures one has@39#

2c12~r !5y12~r !5const, r<L12

so that, because of Eq.~5!, also B12
PY(r ) must be constan

over the same range of distances. We note that this spe
prediction of the PY turns out to be more than qualitative
accurate in comparison to the parametrized bridge functio
as visible in Figs. 4 and 5. Also note that the second z
separation theorem of Zhou and Stell@29# for hard sphere
mixture bridge functions@Eqs.~2.12a! of Ref. @29##.

B128 ~0!5
y128 ~0!

y12~0!
,

combined with the first separation theorem for the cav
distribution function@22#

FIG. 4. Bridge functions for a hard sphere mixture witha
53.333,h50.49, and equimolar concentration (x250.5). Full line:
parametrized simulation results@1#; dashed line: PY estimated wit
hard sphere mixture diameterss i j ; black dots: PY, estimated a
consistency diameterss i j* ; open circles: RY2 results~see Sec. II!.
5,

re

ific

s,
o

y

y12~r ,L12!5
exp~bm1!

r1l1
3 5const

~with m andl, the chemical potential and the thermal wav
length, respectively! implies zero slope for the true cros
bridge function atr 50, and this limiting behavior is also
satisfied byB12

PY(r ).
We have verified, however, that for more extreme asy

metries, dilutions, and packing fractions, the PY represen
tion of the bridge functions becomes poor, and unable
reproduce the marked oscillations that appear in the par
etrized bridge functions.

IV. CONCLUSIONS

We have reported the results of MHNC calculations
hard sphere mixtures, performed on the basis of PY bri

FIG. 5. Bridge functions for a mixture witha53.333, x2

50.01978,h50.45. Dashed line: parametrized bridge function
full line: PY bridge functions at thermodynamic consistency.
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functions in which the hard sphere diameters are chose
such a way as to impose the thermodynamic consistenc
the theory. Parallel calculations in the RY approximati
have been also performed, with the adoption of two f
parameters.

For not too high asymmetries, the MHNC predictions tu
out to be in general accurate, even for a concentration of
bigger-sized component as low as 2%, and up to pack
fraction h50.49. For higher asymmetries the theory see
unable to reproduce the simulation results, especially as
as the contact value of the radial distribution function of t
bigger-sized hard spheres is concerned. The accuracy o
RY theory turns out to be slightly inferior to that of th
MHNC for all the cases investigated.

We also find that the PY bridge functions map fairly a
curately onto those obtained from parametrized comp
simulation results, once thermodynamic self-consistenc
imposed. Such an accuracy holds over the same wide ra
of diameter ratios, densities, and concentrations over wh
thermodynamic and structural properties are successfully
produced by the MHNC.

We observe that our test of the PY bridge functions mi
deserve a further assessment since the parametrizatio
computer simulation results used for the comparison
based on an approximate form for the cavity distributi
functiony(r ) @22,45#. It is also worth mentioning that recen
studies@3# have documented the usually poor performan
of various integral equation theories~PY included! for highly
asymmetric hard sphere mixtures.
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In conclusion, the present work allows one to get a qu
titative estimate of the wide range of physical paramet
over which the easily amenable PY information for ha
sphere mixtures can be fruitfully employed, within th
present MHNC approach, in order to predict thermodynam
and structural properties of hard sphere mixtures. In the
sence of direct simulation information for mixtures mo
asymmetric than those here envisaged, and with the aim
further assessing the performances of liquid state theorie
extreme regimes of the physical parameters, we think
would be also interesting to compare the present results
those obtainable through other closures of the OZ equat
as, for instance, the Verlet@44# approximation, recently re-
considered by Hendersonet al. @5#, or through the use of
other bridge functions as, for instance, those obtained in
fundamental-measure free energy approach of Rosen
@15#.
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